Heizungsmodernisierung mit regenerativen Energieträgern

WebSeminar, am 07.03.2022

C.A.R.M.E.N. e.V. & Klima- und Energieagentur Bamberg

Herzlich Willkommen!

C.A.R.M.E.N. e.V.

Centrales Agrar-Rohstoff Marketing- und Energie-Netzwerk e.V.

Koordinierungsstelle für Nachwachsende Rohstoffe, Erneuerbare Energien und nachhaltige Ressourcennutzung im ländlichen Raum.

Was wir bieten: 30 Jahre Erfahrung aus der Praxis

Beratung u. Koordinierung

- Biomasse / NawaRo
- Erneuerbare Energien
- Energieeffizienz

Technologie- und Informationstransfer

Vernetzung

- Mitarbeit in Verbänden
- Vernetzen von Betreibern

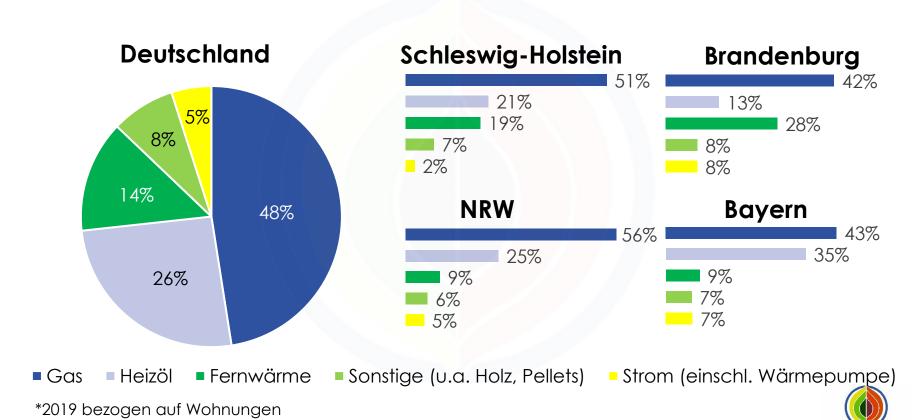
Öffentlichkeitsarbeit

- Publikationen
- Vorträge
- Veranstaltungen
- Exkursionen
- Messen
- Internetauftritt

Begutachtung, Betreuung und Evaluierung einschlägiger Projekte

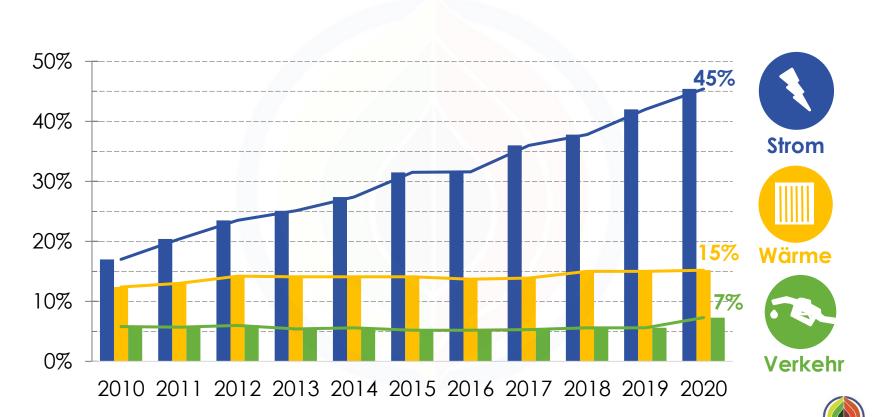
Erstinformation Förderungsmöglichkeiten

Ressourcen und deren Verteilung



Heizungsmodernisierung mit regenerativen Energieträgern

1. Rahmenbedingungen Tobias Doblinger 2. Pelletheizung Sabine Hiendlmeier 3. Wärmepumpe Larissa Auzinger 4. Hybridlösungen mit Solarenergie & Co. Larissa Auzinger 5. Förderungen & Wirtschaftlichkeit Sabine Hiendlmeier



Beheizungsstruktur des Wohnungsbestands*

C.A.R.M.E.N.

Stagnation am Wärmemarkt

Neu Impulse am Wärmemarkt

Ziel

bis 2045

klimaneutral

GEG:

Gebäude-

dämm-

standard

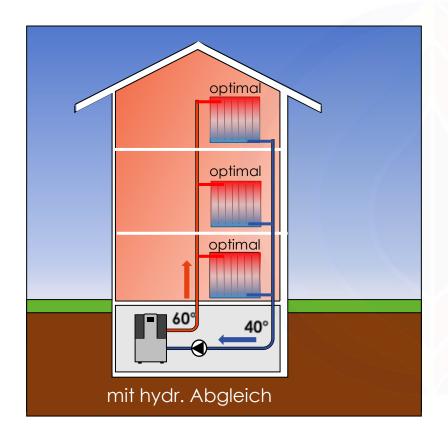
Förderprogramme: Sanieren und EE

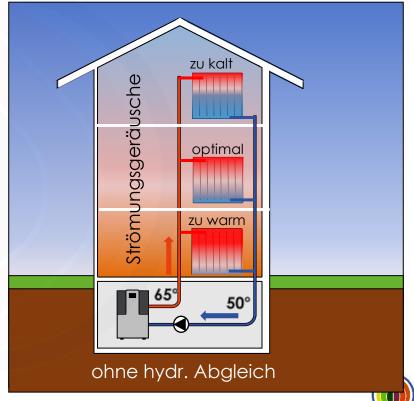
ab 2025 neue Heizung mind. 65 Prozent EE Energieberatung

> CO₂-Preise fossile Energieträger

Zeit für ein zukunftsfähiges Heizsystem!

r, Erneverbare
Energien sind
Freiheitsenergien "
Christian Lindner,
Sondersitzung im Bundestag




Generelle Voraussetzungen für energieeffizientes Heizen

- Geringere Heizleistung und geringerer Brennstoffverbrauch durch mehr Dämmung (iSFP)
- Hydraulisch abgeglichene Heizflächen
- Dimensionierung der Heizflächen für Niedertemperatur-Betrieb
- Niedrige Vor- und Rücklauftemperaturen
 - Für Brennwertnutzung
 - Für gute Bewirtschaftung von Pufferspeichern
 - Für die Einbindung von NT-Wärme (Wärmepumpen und Solarthermie)

Hydraulischer Abgleich

C.A.R.M.E.N.

Orientierungshilfe Heizsysteme im Altbau

Primäre Wärmerzeuger

Heizungsmodernisierung mit regenerativen Energieträgern

1. Rahmenbedingungen

Tobias Doblinger

2. Pelletheizung

Sabine Hiendlmeier

3. Wärmepumpe

Larissa Auzinger

4. Hybridlösungen mit Solarenergie & Co.

Larissa Auzinger

5. Förderungen & Wirtschaftlichkeit

Sabine Hiendlmeier

Holz-Zentralheizungen

Scheitholzkessel

- ✓ ländlicher Raum
- √ Nischenprodukt
- ✓ geringer Komfort

Hackgutkessel

- ✓ große Gebäude
- ✓ ländlicher Raum
- ✓ Nahwärme

Pelletkessel

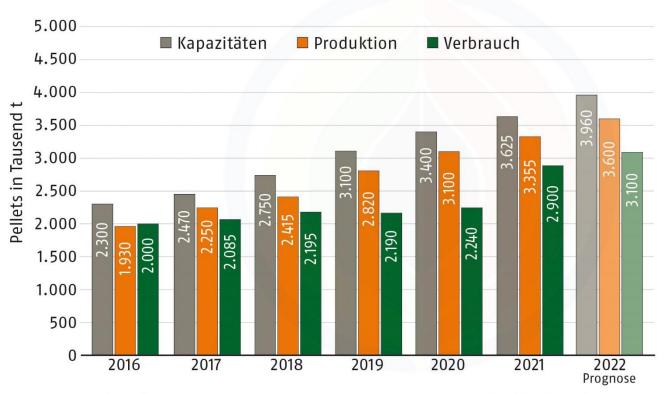
- ✓ Technik und Brennstoff für alle
- ✓ Hoher Komfort

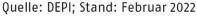
Holzpellets – ein normierter Brennstoff

- Presslinge aus naturbelassenem Holz
 zu über 90 % aus Sägenebenprodukte
- Heizwert: 4,9 kWh/kg (vgl. Heizöl 10 kWh/l)
 Aschegehalt: < 0,7 %

Presshilfe: < 1,8 %

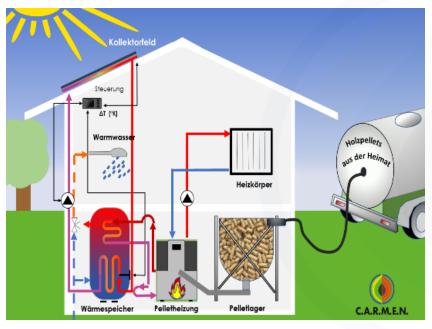
Zertifizierte Pellet A1-Qualität kaufen!




Nachhaltige Waldbewirtschaftung

100% Eigenversorgung in Deutschland

- •zu 98 % Enplus A1 Qualität
- in Deutschland ausschließlicher Absatz am Wärmemarkt
- Import/Export mit Nachbar-ländern


Pelletanlieferung

- Flächendeckendes Logistiksystem wie bei Heizöl
- Einblasstrecke nicht länger als 30 m
- Zufahrt min. 3 m breit,
 4 m hoch

Raumanforderungen einer Pelletheizung

- · Ähnlich einer Ölheizung
- Heizkessel und Pelletlager max. 25 m entfernt
- Heiztechnik ca. 5 m²
- bis 50 kW kein separater Heizraum notwendig
- keine brandschutztechnischen Anforderungen an Decke, Wände und Türen
- dicht- und selbstschließende Türen
- Verbrennungsluftversorgung nach außen (min. 150 cm² gr. Öffnung)
- Lagerung von bis zu 6,5 † Pellets im Aufstellraum erlaubt ohne besondere
 Brandschutzbestimmungen

Kaminkehrer frühzeitig in die Planung einbinden!

Wie groß muss das Pelletlager sein?

- Lagervolumen mind. ein Jahresbedarf (1,2 bis 1,5 fach!)
- Beispiel

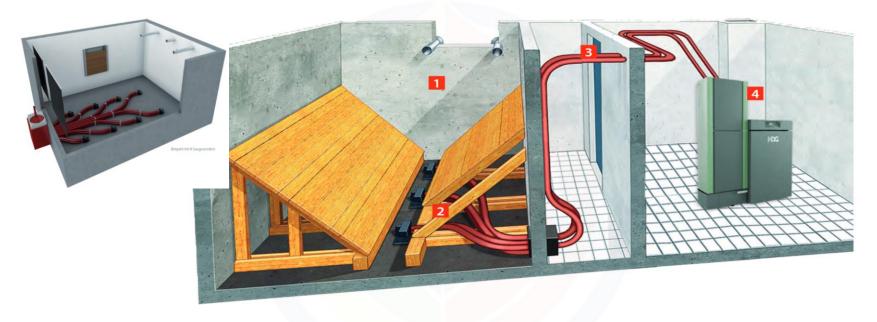
bisher 2.000 Liter Heizöl -> 4.000 kg Pellets

Schüttgewicht: 650 kg/m3

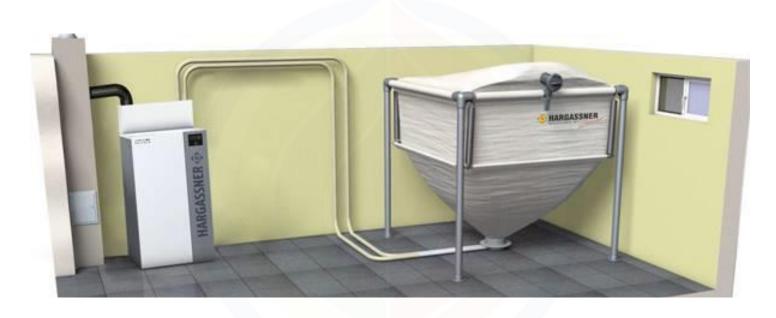
6,1 m³ Pellets * 1,2 (Sicherheit) =

7,3 m³ benötigtes Lagervolumen

Faustformel:


1 kW Heizlast = 0,9 m³ Lagerraum (inkl. Leerraum)

- 2 * 3 m Mindestgrundfläche
- Pellets müssen trocken gelagert werden!


Lagerraum mit Pellet-Saugsonden

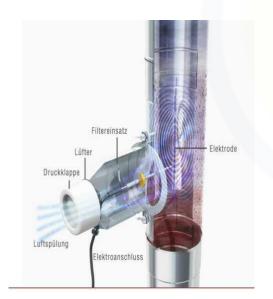
- Eigenbaulösungen möglich (Schrägboden)
- gute Raumausnutzung
- Alternativ: mechanische Schneckenaustragung

Pellet-Gewebesilo

- angezeigt bei feuchtere Räumen
- einfache Montage, geringer Planungsaufwand
- staubdicht, die Luft entweicht durch das Filtergewebe
- Notbefüllung über Sackware möglich

Pelletkessel

- Vollautomatisches Heizsystem ab 7 kW
- Tagesbehälter
- Leistung modulierend
- Pufferspeicher empfohlen (30 l/kW)
- Asche 2-3 x pro Heizsaison leeren
- Wartungsvertrag
- wiederkehrende Emissionsmessung alle 2 Jahre (Kehren 1-2 x jährlich)
- effiziente und saubere Verbrennung
- Optional
 - Brennwerttechnik (RL< 50 °C)
 - Partikelabscheider


C.A.R.M.E.N.

Feinstaubabscheider – Stand der Technik

Elektrostatische Partikelabscheider

häufig integriert in Kessel

 Nachrüstung von Öfen und Kessel möglich

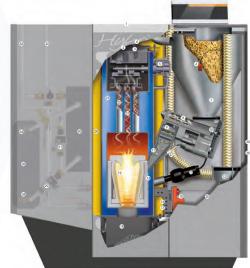
Feinstaubabscheider – Stand der Technik

Auszug aus Typenprüfergebnissen		Staub bei Nennlast [mg/Nm³]	
	Beispiele	Ohne Abscheider	Mit Abscheider
	Pelletkessel 15 kW (PE1)	12,7	0,4
	Pelletkessel 17 kW (Biostar)	15,0	1,3
	Pelletkessel 15 kW (Nano-PK)	5,0	0,3

Quelle: BAFA-Liste der förderfähigen Biomasseanlagen

Grenzwert Staub seit 2015: 20 mg/Nm³ vor 2010: 150 mg/Nm³

Hinweis: Verschärfte Ableitbedingungen für Neuanlagen!


Hybridanlagen - Kompaktbauweise

Scheitholz-Pellet-Kombikessel

Pellet-Luftwärmepumpe

Bildquelle: Fröling (SP Dual)

Bildquelle: Guntamatic Heiztechnik GmbH

Orientierungshilfe Heizsysteme im Bestand

Holz-Pellet-Heizung

- ✓ Hohe Vorlauftemperaturen kein Problem
- ✓ Keine Sanierung der Gebäudehülle geplant
- ✓ Pellet-Anlieferung möglich
- ✓ Platz für Pelletlager
- ✓ Kamin vorhanden/-nutzbar
- ✓ Effizientes und emissionsarmes Heizsystem

Einbindung Brauchwasser-WP + PV empfohlen

✓ Einsparung des zwar nachwachsenden aber nicht unbegrenzt zur Verfügung stehenden Energieträgers Holz

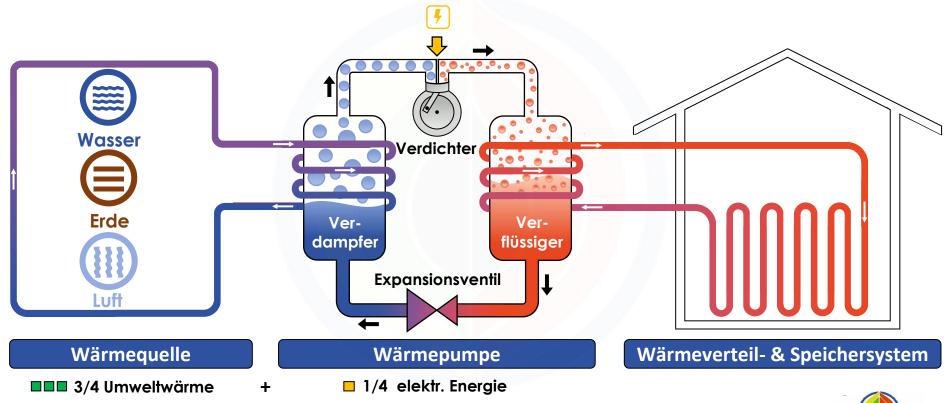
Alternativ Einbindung Solarthermie empfohlen!

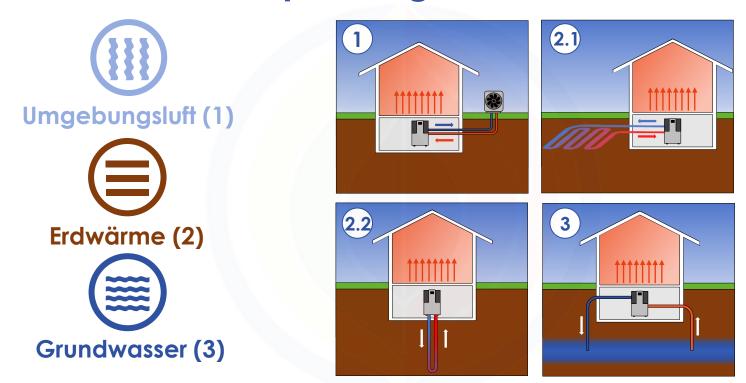
- ✓ Pufferspeicher gemeinsam nutzbar
- ✓ Hoher Warmwasserbedarf

Heizungsmodernisierung mit regenerativen Energieträgern

1. Rahmenbedingungen Tobias Doblinger 2. Pelletheizung Sabine Hiendlmeier 3. Wärmepumpe Larissa Auzinger 4. Hybridlösungen mit Solarenergie & Co. Larissa Auzinger 5. Förderungen & Wirtschaftlichkeit Sabine Hiendlmeier

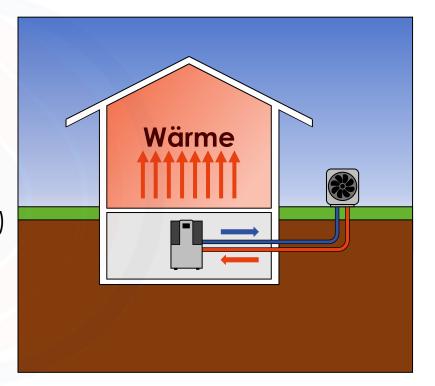
Voraussetzungen für Wärmepumpe


- → je niedriger die Vorlauftemperatur, desto effizienter das System
- Max. Vorlauftemperatur 50-60°C, optimal < 35°C (Flächenheizungen)


Optimierungsmöglichkeiten:

- Anpassung des Wärmeverteilsystems
 (z. B. Austausch alter Heizkörper durch Niedertemperaturheizkörper)
- (Teil-)Sanierung des Gebäudes (z. B. Fenstertausch)

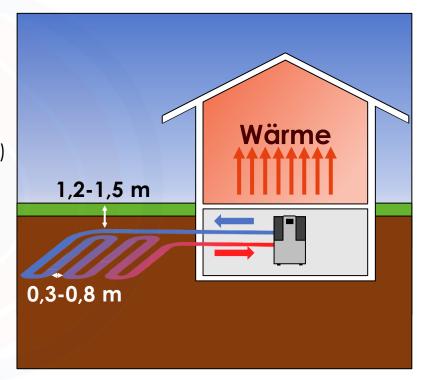
Das Wärmepumpensystem



→ je höher die Quelltemperatur, desto effizienter das System

Umgebungsluft

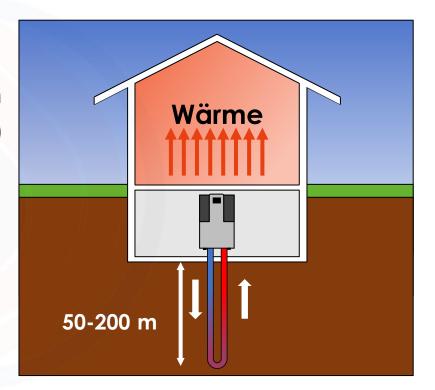
- einfacher Anschluss
 → leicht nachrüstbar
- Investition kostengünstig
- geringere Effizienz (nicht konstante Außentemperatur)
- hoher Stromverbrauch im Winter
- Schallschutz beachten!



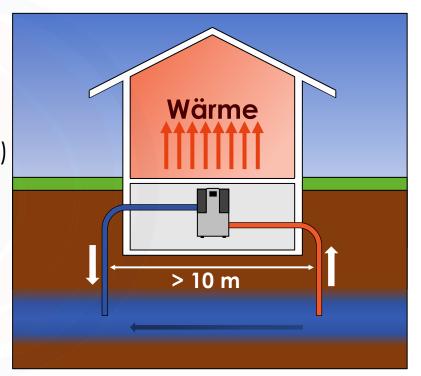
Erdkollektor

- geschlossenes System
- hoher Flächenbedarf
 (1,5- bis 2,5-fache der beheizten Wohnfläche)
- Keine Überbauung/Versiegelung der Fläche über System möglich
- Schwieriger nachrüstbar
- spez. Entzugsleistung 10-40 W/m²

Alternativ:


- Erdwärmekorbe
- Grabenkollektoren

Erdsonde


- effizientestes geschlossenes System
- geringer Flächenbedarf (überbaubar)
- hohe Erschließungskosten
- spez. Entzugsleistung 20-80 W/m
- Anzeigepflicht bei unterer Wassersbehörde
- evtl. genehmigungspflichtig (WHG; BBergG)

Grundwasser

- offenes System
- effizientestes System (konstant hohe Temp. Grundwasser)
- hohe Investitionskosten
- erlaubnispflichtig (WHG)
- Spez. Grundwasserförderrate: 0,25 m³ pro 1kW Verdampferleistung ($\Delta T_{max} = \pm 6K$)

Online -Standortauskunft

Beispiel: Umwelt-Atlas-Bayern (www.umweltatlas.bayern.de)

- Standorteignung oberflächennahe
 Geothermie und weitere Informationen:
 - Erdwärmesonden
 - Erdwärmekollektoren
 - Grundwasser-WP

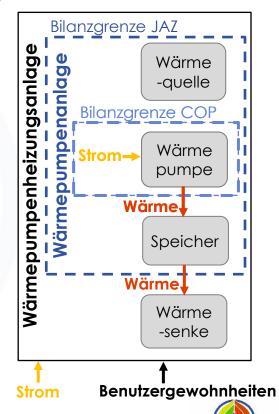
Infostellen für alle Bundesländer unter:

<u>www.geothermie.de/bibliothek/links-und-infosysteme/geologische-dienste-und-infosysteme.html</u>

Effizienz der Wärmepumpenanlage

Coefficient of Performance (COP):

Effizienz einer Wärmepumpe in Betriebspunkt


≜ Normverbrauch Auto

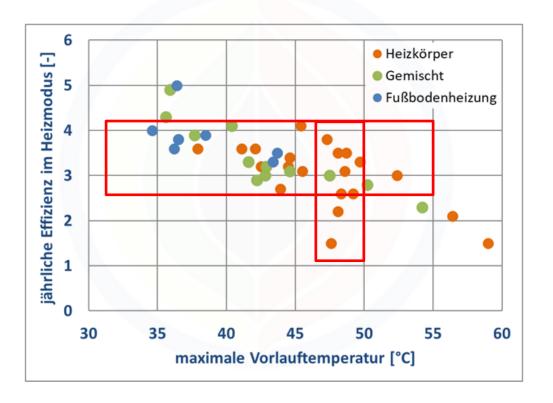
Jahresarbeitszahl (JAZ):

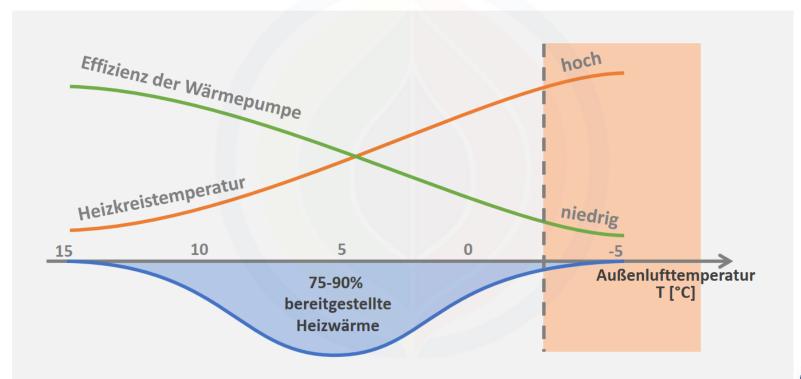
Effizienz des Gesamtsystems, inklusive Hilfsenergie


≜ tatsächlicher Verbrauch Auto

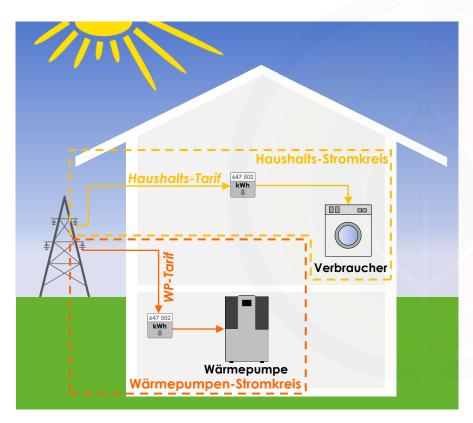
JAZ=
$$\frac{\text{erzeugt Heizwärme}\left(\frac{\text{kWh}}{\alpha}\right)}{\text{Antriebsenergie}\left(\frac{\text{kWh}}{\alpha}\right)}$$

C.A.R.M.E.N.


Einflussgrößen auf die Effizienz von Wärmepumpenanlagen


C.A.R.M.E.N.

JAZ in Abhängigkeit von max. Vorlauftemperatur und Wärmeübergabesystem



Verteilung der Heizenergie auf Temperaturgrade

C.A.R.M.E.N.

Wärmepumpen-Stromtarif

- günstiger als Haushaltsstrom
- aktuell "explodierende"
 Strompreise

Voraussetzungen:

- Messung über eigenen Zähler (getrennt von Haushaltsstrom)
- der Netzbetreiber muss auf die Wärmepumpe zugreifen und sie steuern können (Sperrzeit max. 3x2h pro 24h)

Orientierungshilfe Heizsysteme im Altbau

Wärmepumpe

- ✓ Vorlauftemperaturen < 50°C</p>
- ✓ Optimierung Heizflächen
- √ (Teil-)Sanierung Gebäudehülle
- ✓ eigenen PV Strom nutzen
- ✓ Hybridmöglichkeiten

Einbindung Solarenergie

- ✓ Dachfläche nutzbar
- ✓ PV-Anlage oder Solarthermieanlage vorhanden

Heizungsmodernisierung mit regenerativen Energieträgern

1. Rahmenbedingungen

Niels Alter

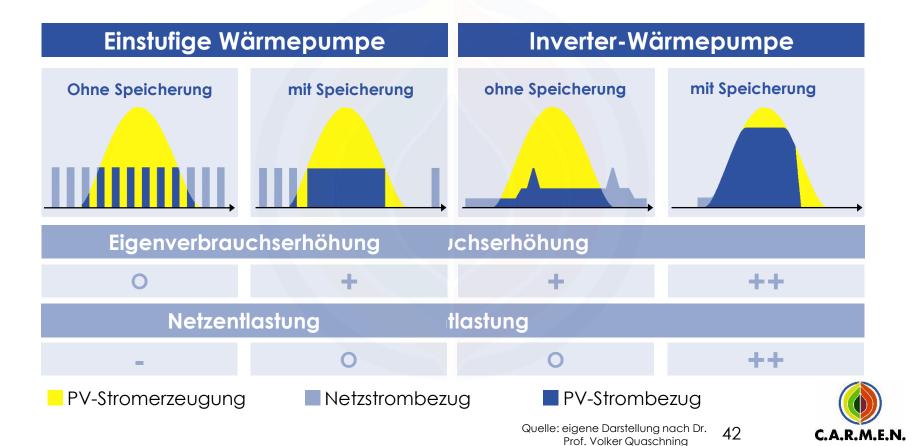
2. Pelletheizung

Niels Alter

3. Wärmepumpe

Larissa Auzinger

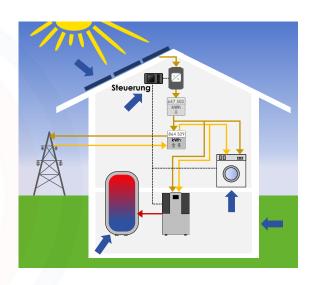
4. Hybridlösungen mit Solarenergie & Co.


Larissa Auzinger

5. Förderungen & Wirtschaftlichkeit

Sabine Hiendlmeier

Kombination PV und Wärmepumpe


Empfehlungen Kombination PV+WP

Einflussfaktoren auf Deckung Strombedarfs:

- Leistung/ Ausrichtung PV-Anlage
- Stromverbrauch Haushalt
- Wärmebedarf des Hauses
- Optimierung Ansteuerung Schnittstellen
- Speichermöglichkeiten

Auslegungsempfehlung:

- Invertierende Wärmepumpe bevorzugen
- Auslegung der PV-Anlage:
 - Leistung: WP-Anschlussleistung x 3 → ca. 30 % Strombedarf der Wärmepumpe über PV
 - Steiler Neigungswinkel für mehr Stromerzeugung im Winter
- Verstärkter Betrieb über Smart-Grid Schnittstelle ansteuern
- Speicher = Gebäudemasse + Wärmespeicher + Stromspeicher

Brauchwasser-Wärmepumpe

- Ziel: Brennstoffe sparen
- günstiger als solarthermische Anlage
- geringer Bauaufwand, daher im Bestand leicht zu realisieren
- Einsatz dann sinnvoll, wenn Dachfläche für PV genutzt werden soll (empfohlen!)
- Entfeuchtung von Kellerräumen

Vitocal 262-A Typ T2H-ze

VITOCAL 262-A

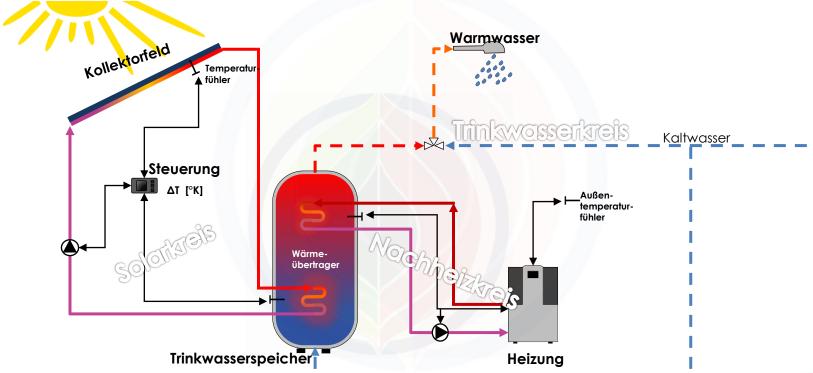
- 1 Hocheffizienter Verdichter
- 2 Großflächiger Verdampfer für effizienten Wärmeaustausch
- 3 Regelung
- 4 Rohrwendel-Wärmetauscher (Typ T2H-ze, Hybridvariante)
- 5 Magnesiumanode
- 6 Trockener Elektro-Heizeinsatz (Zubehör bei der Hybridvariante)
- 300-Liter-Warmwasserspeicher mit Ceraprotect-Emaillierung

Solarthermie als Zusatzheizsystem

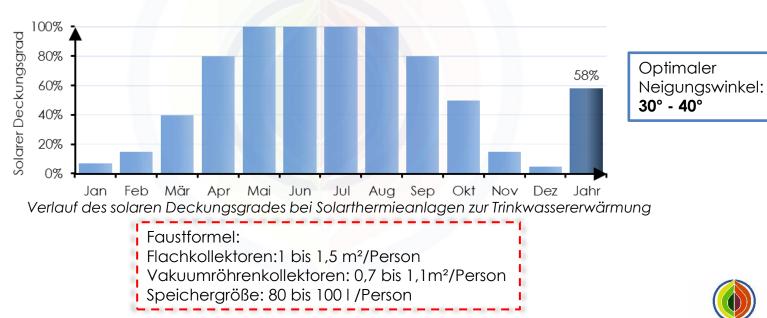
Anwendungen

Privathaushalte

- Solare Trinkwassererwärmung
- Solare Heizungsunterstützung


Empfohlen bei

- Holz-Zentralheizungen mit Pufferspeicher
- Gas- und Ölheizungen (alt/neu)
- hohem Warmwasserbedarf


Solare Trinkwassererwärmung

Auslegung Trinkwassererwärmung

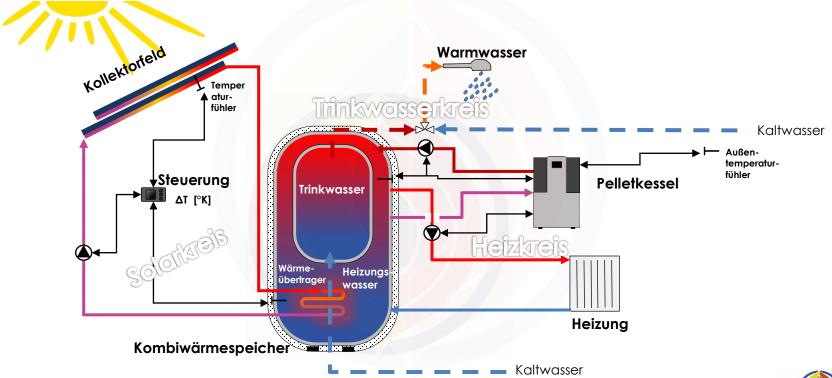
Typischerweise werden Trinkwasseranlagen aus wirtschaftlichen Gesichtspunkten auf einen solaren Deckungsgrad von etwa 50 – 60% ausgelegt.

Solare Heizungsunterstützung

- größere Kollektorfläche nötig
- Energetisch optimierte Gebäudehülle sinnvoll

Warmwasserbedarf ganzjährig relativ kontant

Heizwärmebedarf konzentriert auf Wintermonate

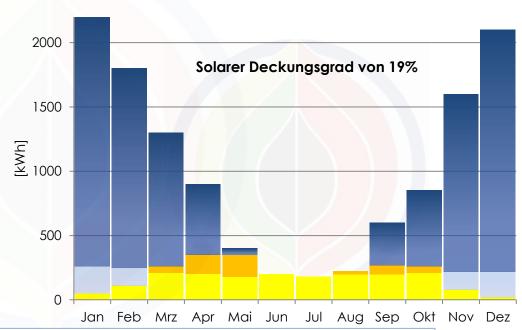


Solarertrag im Winter gering

Auslegung meist so, dass neben Warmwasser nur in Übergangszeiten ein Teil des Heizwärmebedarfs gedeckt wird

Bildquelle: C.A.R.M.E.N. e.V.

Solare Heizungsunterstützung

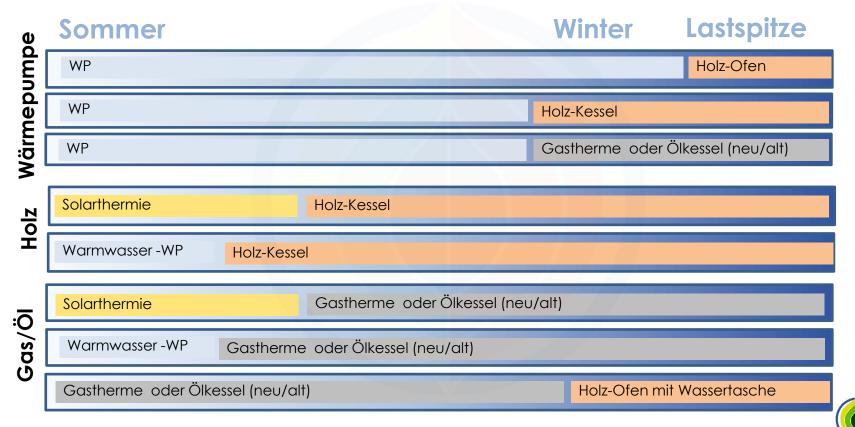

Auslegung Heizungsunterstützung

Exemplarischer Verlauf des solaren Deckungsgrades bei Solarthermieanlagen zur Heizungsunterstützung

WarmwasserSolarHeizwärmeSolarHeizwärmeHeizung

Tipps:

- Anlagengröße auf etwa 20% solaren Deckungsgrad auslegen
- Anlagen von Fachkraft auslegen lassen (stark abhängig von Energiestandard des Gebäudes)
- Steilerer Kollektorneigungswinkel: 45°- 60°
- Wärmemengenzähler ins System integrieren



Solarer Deckungsgrad:

Der solare Deckungsgrad gibt an, welcher Anteil der benötigten Energie durch die Solaranlage gedeckt wird

Hybridlösungen - Beispiele

C.A.R.M.E.N.

Hybridlösungen

Gebäudehülle soll später saniert werden?
 Neue Luft-Wasser-WP (ausgelegt auf zukünftigen Bedarf) wird bis dahin von alter Heizungsanlage unterstützt.

Vorteile	Nachteile
Effizienter Betrieb (intelligente Regelung)	Oft höhere Anschaffungskosten
Hohe Versorgungssicherheit	Komplexität der Technik steigt → nicht immer umsetzbar
Reduzierung der Heizkosten + CO ₂ - Emissionen möglich	oft keine vollständige Unabhängigkeit von fossilen Rohstoffen

Heizungsmodernisierung mit regenerativen Energieträgern

1. Rahmenbedingungen

Niels Alter

2. Pelletheizung

Niels Alter

3. Wärmepumpe

Larissa Auzinger

4. Hybridlösungen mit Solarenergie

Larissa Auzinger

5. Förderungen & Wirtschaftlichkeit

Sabine Hiendlmeier

Ein Programm für alle Gebäude

"Bundesförderung für effiziente Gebäude" BEG (jeweils als Kredit- oder Zuschussförderung möglich)

Wohngebäude (WG)

Sanierung und Neubau auf Effizienzhaus-Niveau

Nichtwohngebäude (NWG)

Sanierung und Neubau auf Effizienzhaus-Niveau

Systemische Maßnahmen

/Einzelmaßnahmen (EM)

Einfache Sanierungs- und Kombinationsmaßnahmen

nur Bestand

(Bauantrag/Bauanzeige mind. vor 5 Jahren, überwiegend Gebäudewärme)

Einzelmaßnahmen

Energetische Fachplanungs- und Baubegleitungsleistungen für alle Maßnahmen

BEG EM: Förderfähige Einzelmaßnahmen Auswahl Wohngebäude

- Effiziente Heizungstechnik mit Nutzung erneuerbarer Energien Zuschuss 20 55%
- Maßnahmen an der Gebäudehülle Dämmung Fassade, Dach, Geschossdecke, Bodenfläche sowie neue Fenster und Haustüren -> Zuschuss 20%
- **Sommerlicher Wärmeschutz** Ersatz oder erstmaliger Einbau von außenliegenden Sonnenschutzeinrichtungen, strahlungsabhängige Steuerung -> **Zuschuss 20%**
- Anlagentechnik (außer Heizung) Einbau und Austausch oder Optimierung von Lüftungsanlagen,
 Einbau digitaler Systeme zur Verbrauchsoptimierung (Efficiency Smart Home) -> Zuschuss 20%
- Heizungsoptimierung hydraulischer Abgleich, Einstellung der Heizungskurve, Tausch Heizungspumpen,
 Dämmung Rohrleitungen, Optimierung WP, Tausch Heizflächen, Wärmespeichern, MSR, Partikelabscheider,
 Brennwerttechnik -> Zuschuss 20%
- Fachplanung und Baubegleitung zur ff. EM -> Zuschuss 50% optional bei Heizungstausch ohne iSFP und Optimierung, verpflichtend bei Gebäudehülle/Anlagentechnik

BEG EM: Einzelmaßnahme Heizungstechnik

		Fördersatz ¹	Fördersatz mit Austausch Ölheizung¹
Gas-Hybridheizung	mind. 25 % EE-Gebäudeheizlast (neu)	30 %	40 %
o to 11, briano, 2011g	Nachrüstung EE innerhalb 2 Jahren	20 %	-
Solarthermie		30 %	-
Wärmepumpe		35 % '\$	45 % 45 %
Biomasseanlage	Pelletkessel, Kombikessel, Scheitholzkessel, Hackschnitzelkessel, Pelletkaminofen mit Wassertasche	35 % 40 % ²	45 % 50 % ²
EE-Hybridheizung I Innovative Heizanlage EE		35 %	45 %
Gebäudenetz	Anteil EE min. 55 % bzw. 75 %	30 % bzw. 35 %	40 bzw. 45 %
Anschluss an ein Wärmenetz	Anteil EE min. 25 % (fp 0,6) bzw. 55 % (fp 0,25)	30 % bzw. 35 %	40 bzw. 45 %

- 1 plus 5 % extra Bonus bei Maßnahme als Teil eines individuellen Sanierungsfahrplans (iSFP)
- 2 plus 5 % **Innovationsbonus** für Holzfeuerungen mit max. 2,5 mg Staub/m³
- max. 60.000 € förderfähige Kosten (brutto) pro Wohneinheit und Kalenderjahr bei Wohngebäuden
- Baubegleitung/Fachplanung max. 5.000 € bei EFH/ZFH

BEG EM: iSFP-Bonus nur bei Wohngebäuden

Erhöhung des Fördersatzes um 5 % bei allen EM

Voraussetzungen

- geförderte Maßnahme Bestandteil eines individuellen Sanierungsfahrplans (iSFP)
 = Schritt-für-Schritt-Sanierungsplan vom Energie-Effizienz-Experten
- unwesentliche inhaltliche Abweichungen, Übererfüllung oder andere Reihenfolge möglich
- Bonus wird nur bei Einbindung eines Energie-Effizienz-Experten gewährt (auch bei Heizungsmodernisierung

Anforderungen an iSFP:

- Umsetzung innerhalb von 15 Jahren
- BAFA-Bundesförderung für Energieberatung für Wohngebäude (EBW)
 - Haus mind, 10 Jahre alt
 - Fördersatz: 80 %, max. 1.300 € bzw. 1.700 € bei 3 WE
 - Beantragung durch Energieberater nach Beauftragung
 - Auszahlung an Energieberater (Honorar muss entsprechend gemindert werden)
 - Auch zuständig für "Gesamtsanierung in einem Zug" zu einem Effizienzhaus

BEG EM: Förderfähige Kosten

Heizungstechnik modernisieren

- 1. Wärmeerzeuger
- 2. Montage, Inbetriebnahme, Garantieverlängerung
- 3. Wärmequelle einer Wärmepumpenanlage
- 4. Brennstoffaustragung, -förderung und -zufuhr
- 5. Wärmespeicher
- 6. Spezifische Umfeldmaßnahmen
 - a. Heiz- und Technikraum (Errichtung, Sanierung, Umgestaltung)
 - b. Brennstoffaufbewahrung (Lager, Bunker, Tank, Silo)
 - c. Abgassysteme und Schornstein
 - d. Wärmeverteilung und Wärmeübergabe (z.B. Flächenheizung, hydr. Abgleich)
 - e. Warmwasserbereitung
 - f. Demontagearbeiten (z.B. Ölkessel, Öltank)
- 7. Baunebenkosten

Wer ist für Sie zuständig?

www.bafa.de

BEG EM Zuschussvariante

ab 01.01.2023
BEG WG und NWG
Zuschussvariante
wandert von KfW zu Bafa

www.kfw.de

Seit 22.02.2022 Antragstellung Sanierung Wieder möglich!

BEG EM Kreditvariante mit Tilgungszuschuss

BEG WG und NWG Zuschussvariante Kreditvariante

Antragstellung BEG - EM

BAFA

Antrag online stellen

- Vor Maßnahmenbeginn, vorher nur Planungsleistungen
- Nach Erhalt Eingangsbestätigung Auftragserteilung möglich

Zuwendungsbescheid

- 24 Monate Bewilligungszeitraum zur Umsetzung der Maßnahme
- Verlängerung um 24 Monate möglich (nach begründetem Antrag

Verwendungs -nachweis

- Nach Installation der Anlage
- Bis 6 Monate nach Ablauf des Bewilligungszeitraums

Antragstellung "Kreditvariante" bei KfW über Hausbank

Sanierung auf Effizienzhaus geplant?

BEG WG Zuschuss und Kreditvariante		Effizienzhausstandard					
		Denkmal	100	85	70	55	40
Sanierung -	1, 3	25 %	27,5 %	30 %	35 %	40 %	45 %
	EE ^{2, 3} (+ 5%)	30 %	32,5 %	35 %	40 %	45 %	50 %

¹ max. 120.000 Euro förderfähige Kosten pro Wohneinheit

- EE-Bonus: mind. 55 % EE Wärme
- Wurde bereits vor Sanierung EE Wärme genutzt, dann entfällt EE-Bonus
- BEG EM Heizungstausch kombinierbar mit BEG WG, aber keine Doppelförderung!
- verpflichtende Baubegleitung (Fördersatz 50 %)

²max. 150.000 Euro förderfähige Kosten pro Wohneinheit (EE-Bonus)

³ 5 % extra Bonus bei Maßnahme als Teil eines individuellen Sanierungsfahrplans (iSFP)

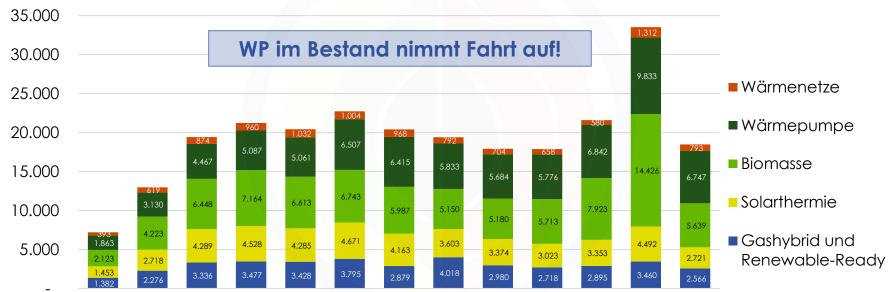
Förderprogramme

Steuerermäßigung für Sanierung → §35c EStG

Nicht kumulierbar mit BEG!

Was wird gefördert

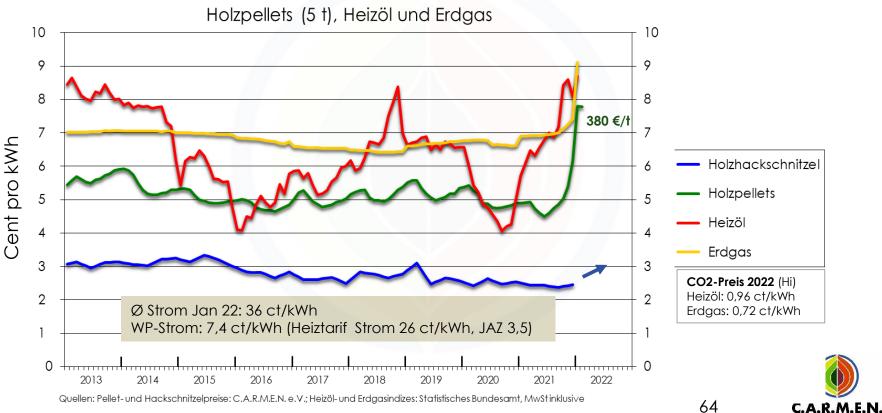
- gültig vom 01.01.2020 bis 31.12.2029
- Privatpersonen f
 ür selbstgenutzte Wohngeb
 äude
 älter als 10 Jahre
- max. 200.000 € förderfähige Kosten pro Objekt, Steuerermäßigung auf Einkommenssteuer über 3 Jahre verteilt


Über 3 Jahre: 20 %¹ (max. 40.000 €) 1. Jahr: 7 %¹ 2. Jahr: 7 %¹ 3. Jahr: 6 %¹ (max. 14.000 €) (max. 12.000 €)

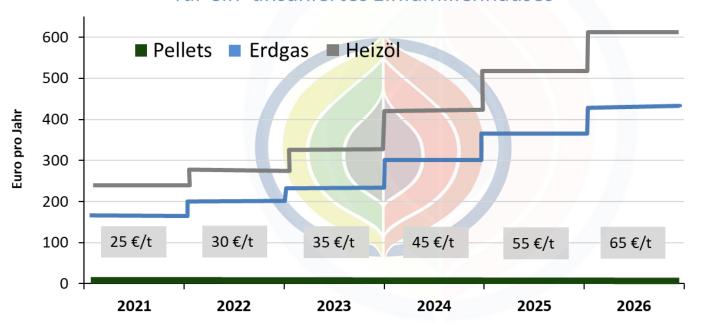
¹ Prozentsätze beziehen sich auf die förderfähigen Kosten für die beantragte Maßnahme

Monatsstatistik BEG EM (Wärmeerzeuger)

Beantrage Wärmeerzeuger



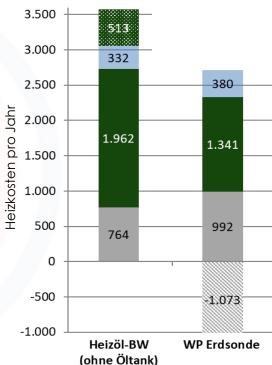
Jan 21 Feb 21 Mrz 21 Apr 21 Mai 21 Jul 21 Aug 21 Sep 21 Okt 21 Nov 21 Dez 21 Jan 22


Preisentwicklung Energieträger

Preisentwicklung bei Holzhackschnitzeln (WG 35),

CO₂-Abgabe auf fossile Energieträger

Erhöhung der Brennstoffkosten durch die CO₂-Abgabe für ein unsaniertes Einfamilienhauses


Keine CO2-Abgabe auf Holzbrennstoffe!

Annahmen: Gebäudebestand, Heizwärmebedarf 25.000 kWh; Jahresnutzungsgrad Öl/Pellet 85 % und Gas 90 %; CO₂-Emissionsfaktor Heizöl 266,4 und Erdgas 201,6 kg CO₂/kWh

Wärmegestehungskosten - Einflussfaktoren

C.A.R.M.E.N.- Heizkostenvergleich (2020/2021):

Orientierungshilfe Heizsysteme im Bestand

Wärmepumpe

- ✓ Vorlauftemperaturen < 50°C</p>
- ✓ Optimierung Heizflächen
- ✓ (Teil-)Sanierung Gebäudehülle von Vorteil
- ✓ eigenen PV Strom nutzen
- ✓ Hybridmöglichkeiten

Holz-Pellet-Heizung

- ✓ Hohe Vorlauftemperaturen
- ✓ Keine Sanierung geplant
- ✓ Kamin vorhanden/-nutzbar
- ✓ Platz für Pelletlager
- ✓ Pellet-Anlieferung möglich
- ✓ Spitzenlastfähig (Hybrid)

Einbindung Solarenergie und Brauchwasser-WP

- ✓ Dachfläche nutzbar
- ✓ PV-Anlage oder Solarthermieanlage vorhanden
- ✓ Brauchwasser-WP einfach nachrüstbar

Fazit

- Energiepreise steigen, daher Verbrauch reduzieren!
- ohne Sanierung der Gebäudehülle Klimaziele nicht erreichbar
- zunehmende Elektrifizierung des Wärmemarktes
- Wärmepumpe im Gebäudebestand oft möglich und sinnvoll
- Wärme Strom Mobilität zusammen denken mit PV
- Solarthermie kann sinnvolle Ergänzung sein
- Holzfeuerungen im unsanierten Altbau mit hohem Wärmebedarf
- Unsere Empfehlung: Heizungssysteme einfach halten (Wartung, Bedienbarkeit)

Heizungsmodernisierung mit regenerativen Energieträgern

WebSeminar, 07.03.2022

Lassen Sie uns gemeinsam die Wärmewende voranbringen!

C.A.R.M.E.N. e.V.

Schulgasse 18, 94315 Straubing Tel: 09421/960-300

contact@carmen-ev.de

www.carmen-ev.de

Klima- und Energieagentur Bamberg Maximiliansplatz 3, 96047 Bambera

www.klimaallianz-bamberg.de

Weitere Termine

✓ C.A.R.M.E.N.-Website <u>www.carmen-ev.de</u>

✓ Veranstaltungskalender

https://www.carmen-ev.de/termine/veranstaltungskalender

√ Soziale Medien

